I had time to write it out. Hope this is clear enough.
Given: A-B=2C, b=5a/9, c=12
Known: A+B+C=180, sinC/12=sinA/a=sinB/b
1.) A-B-2C=0
2.) A+B+C=180
multiply eq. 2. by 2 and add to eq. 1.
3.) 3A+B=360
4.) B=360-3A (this indicates 120>A>90 for 0<B<90.)
therefore A is obtuse.
if sinA/a=sinB/b and b=5a/9 then
5.) sinB=(5/9)sinA
substitute eq. 4. for B
6.) sin(360-3A)=(5/9)sinA
7.) -sin3A=(5/9)sinA
use triple angle identity -sin3A=-3sinA+4(sinA)^3
8.) -3sinA+4(sinA)^3=(5/9)sinA
9.) 4(sinA)^2-3=(5/9)
10.) 36(sinA)^2-27=5
11.) (sinA)^2=32/36=8/9
12.) sinA=sqrt(8/9)
13.) sinB=(5/9)sqrt(8/9)
again, from eq. 1. and eq. 2. extract
14.) 2A-C=180
15.) C=2A-180
16.) sinC/12-sinA/a so
17.) sin(2A-180)=12sinA/a
18.) asin(2A-180)=12sinA=12sqrt(8/9)
19.) -asin2A=12sqrt(8/9)
double angle identity
20.) -2a*sinAcosA=12sqrt(8/9)
from cos^2+sin^2=1 solve for cosA
21.) cosA= sqrt(1-8/9)=sqrt(1/9)=1/3
therefore
22.) (-2a/3)sqrt(8/9)=12sqrt(8/9)
23.) a=(-3/2)12=-18
only care about the magnitude
24.) a=18, b=5a/9=10, c=12
Edit: Remember that A is obtuse so it is a second quadrant angle. To use a first quadrant sine to determine a second quadrant angle, A=180-arcsin(sqrt(8/9))